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Abstract— Learning from demonstration by means of non-
rigid point cloud registration is an effective tool for learning
to manipulate a wide range of deformable objects. However,
most methods that use non-rigid registration to transfer demon-
strated trajectories assume that the test and demonstration
scene are structurally very similar, with any variation explained
by a non-linear transformation. In real-world tasks with clutter
and distractor objects, this assumption is unrealistic. In this
work, we show that a trajectory-aware non-rigid registration
method that uses multiple demonstrations to focus the reg-
istration process on points that are relevant to the task can
effectively handle significantly greater visual variation than
prior methods that are not trajectory-aware. We demonstrate
that this approach achieves superior generalization on several
challenging tasks, including towel folding and grasping objects
in a box containing irrelevant distractors.

I. INTRODUCTION

Learning from demonstration has emerged as a powerful
and effective framework for teaching robots to perform
complex motion skills. A key challenge in learning from
demonstration for robotic manipulation is to transfer a mo-
tion that is demonstrated on one object to another one. When
the manipulation is performed on a deformable object, such
as a rope or a towel, this transfer problem can be especially
challenging, since the demonstration must be warped via
a complex and nonlinear transformation to conform to the
object’s shape. Furthermore, in order for a trajectory transfer
method to generalize to a wide range of tasks without
extensive hand-engineering, the transfer procedure must be
automatic and general.

One practical and general approach to perform trajectory
transfer for deformable object manipulation is to register a
point cloud of the current object to the object used in the
demonstration, determine the transformation function that
maps one object to the other, and transform the demonstrated
trajectory by the same function. This approach has been
shown to produce effective behaviors for tasks such as knot
tying [1], towel folding [2], [3] and simplified surgical sutur-
ing [4]. These approaches register point clouds of the current
scene to the demonstration scene, typically using a color filter
or another masking technique to pick out points of interest.
However, real-world scenes exhibit considerable variation in
shape and color, even when the salient components of the
manipulated objects change only slightly, making it highly
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Fig. 1: A PR2 learned to fold a towel from human demonstrations.

nontrivial to identify or even define the points of interest. If
we can inform the registration process about which points
are actually relevant to the task, we can greatly improve
the robustness and generalization power of registration-based
trajectory transfer.

In this work, we show that such task-aware registration
can be performed by including the demonstrated trajecto-
ries in the registration process, instead of computing the
transformation entirely from the point clouds and only then
applying it to the trajectories. Our trajectory-aware non-rigid
registration method registers multiple demonstration point
clouds to the current scene, computing the transformations
that best put the demonstrated trajectories into agreement.
This agreement is quantified by means of the variance of
time-aligned points along the trajectories. In this approach,
a good transformation is one that puts all of the demonstrated
trajectories close together, even if this means that some points
in the point clouds are not aligned well. This allows our
method to effectively handle distractor objects and irrelevant
variations in the object geometry.

Our main contribution is a trajectory-aware non-rigid reg-
istration method that registers multiple point clouds, together
with their trajectories, to the current scene. We experimen-
tally demonstrate that this approach outperforms standard
trajectory transfer methods based on non-rigid registration
that is not trajectory aware, especially in the presence of
irrelevant distractor objects or when a significant part of
the object being manipulated is irrelevant for the task. We
present experimental results on several challenging tasks
including towel folding and grasping objects in a box con-
taining irrelevant distractors.



II. RELATED WORK

Learning from demonstration, also known as programming
by demonstrations, has emerged as a practical and effec-
tive approach for specifying complex robotic manipulation
skills [5], [6], [7]. One of the principal challenges in learning
from demonstration for robotic manipulation is to adapt the
demonstrated trajectory to the configuration of the objects
at test-time. This adaptation is typically done by means
of features on the manipulated objects [8], [9]. However,
designing features can be challenging and time-consuming.

Several previous approaches have used warping to trans-
fer manipulations between objects. One approach transfers
grasps from a known object onto a new one by finding a
mapping of contact points between the objects [10], [11].
Skill transfer between objects has also been done by us-
ing deformable registrations of RGB-D images [12]. These
approaches focus on finding a registration between single
objects and then using that registration to warp the pose or
the finger position of the manipulator around the surface of
the novel object.

Instead of warping only the points on the surface of
the object, Schulman et al. [1] use non-rigid registration
to compute a warping function for the entire scene. Our
trajectory transfer approach builds on this work. In this
approach, point clouds obtained from a depth sensor are used
to adapt the trajectory. The point cloud in the demonstration
is registered to the current test scene, and a transformation
function is constructed from this registration that transforms
demonstration points into the test scene. This transformation
is then applied to the demonstrated trajectory. This work has
also been extended to jointly optimize the transformation
function and the trajectory in a unified optimization [13] and
to incorporate normals to find better registrations [3]. These
approaches are effective at aligning the trajectory with the
current object. However, the underlying assumption of these
methods is that the test scene is structurally similar to the
demonstration scene. This assumption is reasonable when
both scenes consist, for example, of a single deformable
object. However, when the scenes have multiple independent
parts, this method fails to differentiate between parts that are
more or less salient for generalization.

In order to determine which parts of the scene are most
relevant for the task, we use trajectories from multiple
demonstrations, and choose the registration that puts all of
these trajectories into alignment with the current test scene.
The idea of using multiple demonstrations to improve trans-
fer and generalization has been explored in the context of au-
tonomous flight [14], autonomous driving [15], and dynamic
movement primitives [16]. In the context of deformable
object manipulation, multiple demonstrations have also been
used to recover variable impedance control policies that trade
off force and position errors [2]. However, to the best of
our knowledge, ours is the first method that incorporates
information from multiple demonstrated trajectories into the
objective for non-rigid registration, with the goal of enabling
computing a registration that is most appropriate to the task.

III. PRELIMINARIES

In this section, we review Schulman et al.’s approach [1]
for trajectory transfer, the coherent point drift (CPD) al-
gorithm [17] for point set registration, and the thin plate
spline (TPS) [18], [19] parametrization for non-rigid trans-
formations. Although the topics in this section are not new,
their combination is novel to this work and forms the basic
building blocks for the algorithm presented in this paper,
which combines these approaches together with trajectory-
aware registration in a unified probabilistic framework.

A. Learning from Demonstrations via Trajectory Transfer

In the method proposed by Schulman et al. [1], a demon-
stration consists of a point cloud X of the demonstration
scene and a sequence of end-effector poses. At test time, a
test point cloud Y is observed. The goal is to generalize
the demonstrated trajectory to the new scene. Schulman et
al. use the TPS-RPM algorithm [20] to find a non-rigid
registration that maps points from the demonstration scene to
the new test scene. Then, the registration function is applied
to the demonstration trajectory to get a warped trajectory.
This has the effect that the resulting end-effector motion
incorporates variations in the new scene, which is important
in manipulation tasks. The resulting trajectory does not
incorporate collision avoidance and joint limits, so trajectory
optimization [21] is then used to find a feasible joint angle

trajectory.
When a collection of K demonstrations is available,
D = {D',..., DK}, aregistration function that maps points

from the demonstration scene X* to the test scene Y is
independently computed for each demonstration D*, and the
demonstration that incurs the least registration cost is chosen
for trajectory transfer. In this work, we will instead use all
of the demonstrations together, as discussed in
The prior method also makes use of the TPS-RPM algorithm
for registration [1]. In this work, we instead use the CPD
algorithm, described in the following subsection, which
provides a substantial improvement in outlier handling, as
shown in our experiments.

B. Coherent Point Drift

The CPD algorithm finds a registration between a
source and target point set, which in our case are
point clouds from a depth camera. Denote the source
point X = [x, xN]T
Y = [yl yM]T, with points x;,y, € RP for some
dimension D. The registration problem is to find a transfor-
mation 7 : RP? — RP that maps source points to target
points.

1) Probabilistic Model: The CPD algorithm considers the
registration of the two point sets as a probability density
estimation problem, where the transformed points in X are
the centroids of a Gaussian mixture model and the points in
Y as the data points generated by this model. An overview
of the probabilistic model is given in

The first N components of the mixture model are Gaussian
on the deformed source points, with mean X; = 7 (x;) and

and the target point set
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Fig. 2: Graphical model describing the generation of target points
y; from a Gaussian mixture based on the source points x;. Each
Gaussian has mean %, = 7(x;) and variance o2, z; = i
indicates the component ¢ from which the point y; is generated,
A controls the regularization of the transformation, and w is the
outlier probability.

variance o2. The transformation function 7 is the warp that
we are trying to recover. An additional uniform component
N + 1 is modeled to explain the generation of noisy and
outlier points.

The prior probability of a point y; being generated from
the uniform component is P(z; = N 4+ 1) = w, where z;
indicates a component of the mixture and w is a parameter
chosen as the outlier ratio. The prior probability of a point
being generated from one of the Gaussian components is
assumed to be uniform, P(z; = i) = (1 — w)+. To lighten
the notation, we denote z;; to be a shorthand for Zj = 1.

2) Registration through Maximum a Posteriori Estima-
tion: The transformation function 7 is estimated by maxi-
mizing the log-likelihood of the data, which is

log P(Y'|X, T 0?) =
N+1

Zlog Z P(z;;)

We can Optllee this objective using the expectation-
maximization (EM) algorithm [22]. Treating the component
indicators z; as latent variables, the EM framework defines
the auxiliary function,
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for an averaging distribution ¢(z;]y;). The EM algorithm
is a coordinate ascent algorithm on the auxiliary function
L(q, T ,0?), which is bound on the log-likelihood [22].

In the expectation step (E-step), we fix the latest trans-
formation 7 and variance o2 estimates and maximize the
auxiliary function with respect to the averaging distribution
g and obtain a new optimum that we denote as p;;:

eIy =T =117 /202

pi; = argmax L(q, T,0%) =
q
3)

— 2\D/2 _w 1
In the maximization step (M-step), we fix the latest
distribution estimate p;; and maximize the auxiliary function
with respect to 7 and o2 and obtain a new optimum,
{T,0?} = argmax L(q, T ,0%) = argmin E(T ,0?),
T ,02 T ,02
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where E is the energy function
N M
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In order to manipulate deformable objects, we typically
want a non-rigid transformation. Such transformations have
many degrees of freedom and require some prior distribution
to recover reasonable warps. To that end, we use the prior
P(T) o« exp (—4R(T)), where X is a parameter and R is
a regularizer. To obtain a smooth transformation 7, we use
the thin plate spline regularizer, which is discussed in the
next section. Incorporating this prior requires maximizing
the posterior P(7'|Y,0?) instead of the likelihood. This is
equivalent to modifying the M-step update to be

{T,0%} =argmin B(T,0) + 3R(T). )

D
E(T,o0) P~ logo?,

C. Thin Plate Splines

As in the previous work that uses non-rigid registration for
trajectory transfer [1], we use the thin plate spline (TPS) [18],
[19] parametrization for the transformation 7, which can be
obtained by regularizing the second-order derivatives of the
transformation. The TPS regularizer is given by

Tl = [ dx D270

which is a measure of the curvature of 7 and encourages
the mapping to be as smooth as possible. The optimal
transformation that minimizes such regularizer can be found
analytically and has the form

Za7 x;,X) + Bx +c. 6)

I5 )

This corresponds to an affine transformation defined by B
and c, plus a weighted sum of basis functions centered
around the data points, given by k(x;,x) = — ||x — x,||°.
We follow prior work [1] and use

R(T) =T |1ps + (B = I)" diag(r)(B—1I), (7)

where the second term is weighted by r € R” and regular-
izes the affine part to be close to the identity matrix I.

IV. LEARNING FROM MULTIPLE DEMONSTRATIONS
USING TRAJECTORY-AWARE REGISTRATION

While the registration method described in the previous
section can be used to transfer demonstrations for a variety
of deformable object manipulation tasks, as shown in prior
work [1], it is not informed by the task. The demonstrated
trajectory is transformed by a non-linear warping function
that aligns the demonstration point cloud to the current point
cloud, under the assumption that this point cloud transforma-
tion is also appropriate for transforming the trajectory. When
the two point clouds correspond to the same object, this
assumption is reasonable, since points at which the trajectory
interacts with the object remain on the object’s surface.
However, in natural environments, the point clouds will



rarely correspond to exactly the same object, so registering
all points correctly is impossible. The question then arises:
which points are more important to align correctly?

We use multiple demonstrations by extending the prob-
abilistic framework in the previous section to model the
point clouds of all the demonstrations, as well as the gen-
eration of trajectories in the test scene. The assumption is
that if all of the demonstration trajectories are transformed
by the (unknown) correct warp for the test scene, then
these transformed trajectories are generated from the same
distribution. This assumption is very natural, since all of
the demonstrations belong to the same behavior, and the
only variation between them is due to the arrangement of
the scene. Optimizing the posterior probability of the new
model results in an intuitive registration objective. It encodes
our preference for registrations that also puts all of the
demonstrations into alignment.

We combine K demonstrations of the same task to obtain
a single trajectory in the test scene. To obtain the nonlinear
transformation for each demonstration trajectory, we jointly
optimize the registration functions 7, ..., 7 for all of the
demonstration point clouds together with an objective term
that quantifies the degree to which the warped trajectories are
aligned. Note that this procedure requires multiple demon-
strations to be available in order to be trajectory-aware, since
minimizing the alignment of a single trajectory with itself
does not yield a meaningful objective.

In this section, we first describe how to extend the CPD
model to register multiple demonstrations to the test scene,
and then show how the model can be augmented to con-
sider the distribution over transformed trajectories. Our full

probabilistic model is summarized in
A. Non-Rigid Registration from Multiple Point Clouds

In order to learn from multiple demonstrations, we register
all of the demonstration point clouds to the test scene.
Let X* = [x’f x’j{,k}T denote the point cloud for
demonstration D*. We can register each of the demonstration
scenes onto the test scene by finding K transformation
functions 77,..., 7% that map points from each demon-
stration to the test scene. This corresponds to an extended
probabilistic model where the target points are still generated
from a Gaussian mixture, but now the centroids are the
deformed source points from multiple demonstrations, with
the centroids from demonstration D* warped by T*.

The full Gaussian mixture has Ny + 1 components, where
Nk = ZkK Ny, is the total number of source points. The
first N components are Gaussian with mean X5 = 7% (x¥)
and variance o2. As before, the last component is uniformly
distributed. The prior probability P(zfj) of a component
remains the same as before, where zfj now indexes the point ¢
within demonstration D¥. The mixture model takes the form

1
(1-w)— ;ZP(yjlzfj,xf,T’ﬁa% twor ®)
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Fig. 3: Graphical model describing the generation of target points
y; and features ¢; from a Gaussian mixture. Each Gaussian for the
points has mean ¥ = 7% (xF) and variance o2, each Gaussian for
the features has mean J)f and variance o2, z; = {i, k} indicates
the component i from demonstration D* from which the point Y;
and feature ¢; are generated, A and r control the regularization
of the transformation, and w is the outlier probability. In addition,
each transformed trajectory point §¥ = 7%(qF) is generated from
independent Gaussians with mean g, and covariance X; with prior
parameters W, and v.

The transformation functions 7% are estimated by jointly
maximizing the posterior probability of the transformations,
P(TYE|Y, X 1K 52). As before, we use the EM algorithm.
The E-step update is similar to but with mixing
proportions pfj for each demonstration D*. In the M-step,
we optimize with respect to the transformations 7% and
variance o2 by minimizing the following objective

NpD
Epoints(Tl,' . »,TK,O'2) = 1; 10g0’2
| KN , &
t55 2 Phly, - THED SR, ©
kyi,j k
where Np = kKlekM pfj. In a single M-step, we first

jointly optimize the transformations 7 ¥ while holding the
variance o2 fixed, and then we optimize for the variance
while holding the transformations fixed. This corresponds to
the generalized EM algorithm [23].

~k . .
We also model features ¢, , @; € RP# of the points with a
similar mixture model, where the components are Gaussian

with mean (]35 and variance 05. For more details, see the
This registration does not yet incorporate trajectory infor-
mation. In the experiments, we will refer to this approach
as the ablated method, and will show that incorporating
trajectory-aware terms leads to a better registration.



B. Trajectory-Aware Non-Rigid Registration

While using multiple demonstrations already leads to
better registration due to the improved outlier handling, it is
not informed by the particular task at hand. When the scene
at test time differs structurally from all of the demonstrations,
simply detecting outliers may not be sufficient, since it may
not even be feasible to register the inliers without excessive
distortion. However, if we use the demonstrated trajectories
to automatically decide which parts of the scene are relevant,
we can handle significantly greater variation.

We derive a trajectory-aware registration by adding the
demonstrated trajectories to the probabilistic model. In addi-
tion to the generation of points in the test scene, the model
also explains the generation of trajectory points in the test
scene. We parametrize a trajectory as a sequence of points
in RP. These could be points on the robot’s manipula-
tor or finger as done in [13]. Let Q* = [qf --- qifp]T
be the trajectory of points of length 7' for each demon-
stration D¥. These variables are observed, since theyr are
part of the demonstration. Let QF = [q’f ~k] be
the transformed points, with §¥ = 7%(qF). We model the
transformed points at each time as being generated from
a Gaussian distribution, with different Gaussians for each
time step. The Gaussian at time step ¢ has mean p, and
covariance ;. The desired trajectory for the test scene is the
mean trajectory. The probability density of the transformed
trajectory points is given by

exp (*% HT’“(qf) - Ht||2z;1)
(2m)D/2 |2, |/

P(éf|qf7Tk7uta Et) -

)

where [la — g5 = (a—p)" =7 (@ - p).

The parameters of these Gaussian distributions are hidden
variables since they are in the transformed space and the
transformations are unknown beforehand. Since there are
only K data points for fitting each of these Gaussians, esti-
mating their parameters is prone to overfitting. To overcome
this, we add an inverse Wishart prior on their covariances,
with scaling matrix ¥, and degrees of freedom v. The prior
probability of the covariance 3; is then given by

¥, |V/? _v+D+1 1
P(Z,) = JD# b3 2 exp <2 Tr (xptzgl)).
22T, (%)

The parameter ¥, reflects the relative importance of the
trajectory at time step ¢ for the registration. Intuitively,
points that are closer to objects in the scene are more
important, since the robot interacts with the world primarily
by touching it with its grippers. Points on the trajectories
that are far away from objects tend to exhibit greater
random variability during the demonstrations, and are less
critical to align properly in order to execute the task.
Therefore, we set the parameter W, to be a diagonal matrix
proportional to the average distance of the closest point,
U, =o(f S8 dy)T, where a is a proportionality con-
stant and dy; = milie (1, Ny} ||qéC — xf” is the minimum

distance between the position in the trajectory at time step ¢
and the point cloud in demonstration D*.

We estimate the parameters of these Gaussians, along with
the other parameters of the model, by maximizing the pos-
terior probability P(T 5, 31.7|Y, XK 02, QYK uy.p).
The E-step remains unchanged, while the M-step now also
optimizes over the trajectory covariances ;.7 by adding the
following term to the objective

1 K
Etrajectories(zlv RN ETvT P 7T ) =

1 I K
322

t ok
v+ K+D+1

T T
1
5 > log ] + 3 > T ().
t t

In order to ensure that all trajectories Q¥ are of length
T, we preprocess the demonstrations by using dynamic
time warping (DTW) [24] to align all of the demonstration
trajectories to the first trajectory in the set.
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C. Trajectory Transfer

After solving the trajectory-aware non-rigid registration
optimization problem, we can comgute the mean of the
warped trajectory points, p, = % >_;. 7"(q}). Using these
points as the transferred trajectory, we follow prior work [13]
and use trajectory optimization to find a feasible joint angle
trajectory that follows the points pq, ..., . In our exper-
iments, we take the trajectory points to be the points at the
center of each finger of the robot. Multiple points per time
step can be modeled by treating each of them as happening
at separate time steps since, in our model, the Gaussian
trajectories are independent of each other across time steps.

V. ALGORITHM SUMMARY

We have presented a probabilistic model that models the
generation of point clouds, trajectories, and features for the
test scene. We find a trajectory-aware non-rigid registration
by optimizing the posterior probability of the graphical
model in

P(TI:K3211T|Y7 Xl:K) 027 QLKa K11 (I’a i’l:Kv 0-425) X

P(Y|X1:K, 7—1:K7 UQ)P(Tl:K)
P(Ql:K|Q1:K7 Tl:K? K11 El!T)P(EliT)

P(®3"" o?). (10)

We optimize the posterior probability using the EM algo-
rithm. In the E-step, we update the point correspondences
between points and features in the demonstration scenes and
the test scene,

o= () P20 gl 25— /202

k
Pij = %, a — , (1D
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In the M-step, we minimize the following objective func-
tion,

K,Nj,M ,
wz D, Py - T
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" K Epoints
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The first and last term minimizes the residual of the target
points and features, and the warped source points and fea-
tures from all the demonstrations, weighted by their corre-
spondences. To enforce the smoothness of the transformation
functions, we penalize each of them with the regularizer
of The second term minimizes the weighted
sum of the spatial variances of the warped trajectory points
across demonstrations. In the special case that each of the
trajectory covariances is fixed to be the diagonal matrix
3= %I , with weights wy, this objective term is equivalent
to a weighted sum of the trace of the empirical covariances
of the warped trajectories.

VI. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation
of our trajectory-aware non-rigid registration approach for
learning from demonstrations on a PR2 robot. We compare
our method against TPS-RPM with a single demonstration as
in previous work [1], CPD with a single demonstration and
the ablated method of that registers multiple
demonstrations without using any trajectory information.

The demonstrations were obtained through kinesthetic
teaching, and the green table was removed from the point
clouds by using a color filter. The registration features con-
sisted of RGB color. We used the same hyperparameters in all
experiments: the outlier ratio was w = 0.8, the regularization
parameters were A = 100 and r = [10, 10, 10], the feature
variance initialization was o2 = 0.1, and proportionality

¢
constant for the trajectory covariance prior was a = 10.

A. Pick and Place from a Box with a PR2

We evaluated our approach on two pick and place tasks,
which consisted of two different behaviors demonstrated for
very similar scenes. The two tasks are shown in [Fig 4

In the first task, shown in the goal was to pick

up the item in the top right corner of the box, regardless of
its shape or color. In the second task, shown in
the goal was to always grasp the white item, regardless of
its position. The last two demonstrations for both tasks were
the same, due to the placement of the white object. The test

(b) Picking up a white item from a box.

Fig. 4: Demonstrations of picking up an item from the box and
placing it on the table.

(@ (b)
Fig. 5: Test scenes for the box tasks, @ one with the red item in
the corner and @ the other one with the white item in the corner.

scene is shown in and comparisons on this scene
are presented in

In the first task, all four methods are able to grab the item
in the corner of the box. Without any trajectory information,
the single-demonstration methods and the ablated method
register as many points as possible, which in this case are
the points on the box. This leads to a good registration
of the box and causes the trajectories to grasp the object
in the corner. In the second task, TPS-RPM, CPD and the
ablated method all fail to grasp the white item. The single-
demonstration methods do not capture information from
multiple demonstrations and instead just take the demon-
stration closest to the test scene and warp its trajectory.
When none of the demonstration scenes are similar to the test
scene, the registration is poor and the transferred trajectory
is ineffective. The ablated method registers the box at the
expense of the target object, producing trajectories that reach
for different parts of the box. Our trajectory-aware approach
is able to capture the critical aspect of the task: the only thing
that matters is the target object, since putting this object into
correspondence aligns all demonstrated trajectories.

Although the prior methods are successful on one of the
two tasks, our approach succeeds on both, since it is correctly
able to infer which part of the scene is the most important
to the task at hand by using the trajectory alignment term.

Method Pick item at the corner ~ Pick white item
Fd o
TPS-RPM yes yes no no
CPD yes yes no no
Ablated close yes no no
Trajectory-aware yes yes close yes

TABLE I: Successes of grasping the desired item, which is the
item at the corner of the box for the first task and the white item
for the second task. The successes for each of the two test scenes
of are reported for each task and registration method.
We report close when the gripper goes to the right location but
misgrasps.



B. Towel Folding with a PR2

We also evaluate our approach on two towel folding tasks.
The setups of these tasks are shown in [Figure 6| Each of the
tasks requires folding the towel, but the correct position of
the fold differs between the tasks. In the first task, shown in
the robot must grasp the right edge of the towel
and fold it to a fixed amount (three fourth of its length). In the
second task, shown in [Figure 6b] the robot must instead fold
the towel such that the edge aligns with the white stripe. We
recorded demonstrations with the stripe at different positions,
as shown in[Figure 6] but the same set of stripe positions was
used for both tasks, so that only the motion differed. The
second demonstration for both tasks was identical, since the
stripe was three fourths of the way along the towel. In order
to succeed at this task, the robot must associate the motion
with the right cue—either the edge of the towel, or the stripe.
The test scene is shown in [Figure 7

In the first task, all three methods come close to folding the
towel to three fourths of its length. The single-demonstration
methods succeed because the scene of the closest single
demonstration matches its whole towel well with the target
towel. This results in a warped trajectory leading to the
correct location at three fourths the length of the towel. For
the ablated method, although the stripes weren’t registered
across the demonstrations, the whole towel matched the
target towel, and the average trajectory brought the fold to
three fourths of the length. With our method, the registration
also aligns the whole towel, since the trajectories always
travel the same distance and ignore the stripe.

In the second task, our method consistently placed the
edge of the towel closest to the stripe. A quantitative evalu-
ation of the final distance of the edge to the stripe is given
in We can see that both of the single-demonstration
methods missed the stripe, since the towel itself contains
many more points, and the algorithm is not aware of the
special importance of the stripe. The ablated method also
did not correctly register the stripe, as shown in the point
cloud renderings. Since our method minimized the variance
of the trajectories, it was able to correctly pick out the stripe
as the relevant cue in the scene. The registrations are shown
in [Table 1111

These experiments show that the trajectory-aware regis-
tration method is able to correctly identify the relevant parts
of the scene, while both the prior methods and the ablated
method naively attempt to register the dissimilar scenes to
one another without a careful consideration for the task.

VII. DISCUSSION AND FUTURE WORK

We presented a trajectory transfer method based on
trajectory-aware non-rigid registration. Our approach trans-
fers multiple demonstrated trajectories to a new scene by
finding a non-linear warp that, along with aligning the point
clouds, also aligns all of the demonstrated trajectories. By
finding a transformation that minimizes the variance of points
along the demonstrated trajectories, our method implicitly
reduces the impact of irrelevant distractor points, thus im-
proving generalization and robustness when compared to

(a) Folding to three fourths of the towel regardless of the placement

of the white stripe.
ﬂ

(b) Folding towards the center of the white stripe.

Fig. 6: Demonstrations of folding a towel where the white stripe
on the towel is sometimes used as a reference. The stripes were
placed at 1/2, 3/4th and the end of the towel.

(b) 7/8th (c) End

(a) 5/8th

Fig. 7: Test scenes for the towel tasks, with the stripe at 5/8th,
7/8th, and the end of the towel.

standard registration methods, which are not trajectory-aware
and do not effectively exploit multiple demonstrations.

Our experiments demonstrate that our approach can per-
form complex tasks that require associating cues in the envi-
ronment with parts of the demonstration. Such cues include
the corner of the box and the top of the white object, as well
as the stripe in the towel folding task. The results show that
our trajectory-aware method achieves better generalization
by using task-appropriate cues in the registration.

Although our method is trajectory-aware, we use a rel-
atively simple geometric measure of trajectory agreement,
based on the variance of the points along the multiple
trajectories. While this approach is simple and effective in
our experiments, it is not aware of the goals of the task,
and does not make any attempt to determine which parts
of each trajectory are more or less important. For instance,
a demonstration that involves grasping might require much
more precise positioning of the gripper during the grasp than
during the rest of the motion. Our weighting scheme encodes
a hand-specified notion of importance based on the distance
between the objects in the point cloud, but this weighting
is not adapted to the data. In future work, this kind of
information could be recovered automatically by combining

Method Fold to three fourths Fold to stripe

4 [o] [ RrRMS [{ [H] [i Rms

TPS-RPM 38 13 13 2.4 229 44 33 13.6
CPD 38 06 13 2.3 3.1 51 343 269
Ablated 06 15 57 3.4 108 58 7.6 8.3

Trajectory- ¢ s¢ 76 56 64 06 13 38
aware

TABLE II: Distance errors (in cm) of the towel edge and the desired
positions, which is three fourths of the towel for the first task and
the center of the white stripe for the second task. The errors for
each of the three test scenes of and the root mean square
(RMS) of them are reported for each task and registration method.



Method

TPS-RPM CPD

Ablated Trajectory-aware

Fold to
three
fourths

it M

Fold to
stripe

TABLE III: Results of towel folding with a PR2. Each row corresponds to a different task and the column compares our methods against
using a single-demonstration with TPS-RPM and CPD, and using an ablated version of our method. The images show a snapshot of
the execution. For videos, see http://rll.berkeley.edu/iros20151fmd/} The renderings visualize the test point cloud, the
transferred gripper trajectories as dashed lines, and the mean of them as a solid line.

our approach with goal learning techniques, such as inverse
reinforcement learning and inverse optimal control [25], [26],
[27], [28]. An exciting avenue for future work would be to
explore this direction and develop a non-rigid registration
method that is not only trajectory-aware, but also goal-aware.
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APPENDIX I
INCORPORATING FEATURES IN THE NON-RIGID
REGISTRATION

The registration works well when the relevant part of
the object looks distinctive from the rest of it. This is
because the trajectory-aware registration uses the trajectories
to align the demonstration point clouds and thus learn the
relevant part of the object for the task. However, if that
part is indistinguishable, then the algorithm has no way of
identifying the relevant part of the test object. This could
happen if the distinction is in visual appearance but not in
the spatial points.

For this reason, we also explicitly model visual features
in our probabilistic model. Let the features of the source

£
j;va} and the features of

the target point set be ® = [¢; bl '

~k . . .
¢, ¢; € RP¢, where D, is the dimension of the features.

point set be 3" = {JS’I

, with features

The feature J)f corresponds to point x¥ and the feature
¢; corresponds to point y;. Unlike the points, we assume
that the features are invariant to the transformation function.
In our experiments, we use the RGB color of the point
as the feature for that point. That is, the feature is a 3-
dimensional vector with one color channel per entry and the
domain of each channel is between 0 and 1. The probabilistic
model resembles the mixture in but now the
components are Gaussian with mean (},’;Z and variance O’i,

~k
P(¢j|¢iagi) =
1 & k: 1
e T
(1 fw)N—K SO> P(glak, by, 02) twor (12)
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We estimate the parameters by maximizing the posterior
1K LK _2 ALK LK o
P(T aEI:T‘Y7X , O 7Q aNl:Tv(I)7(I) 7U¢)' The
M-step now also optimizes over the variance 03 and con-
tributes the following term to the objective
K,Ni,M
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APPENDIX IT
COHERENT POINT DRIFT WITH THIN PLATE SPLINES IN
CLOSED-FORM

The thin plate spline form of uses a weighted
sum of basis functions centered around the data points. In this
section we consider the general case in which the basis func-
tions are centered around any points. These points are called
control points, which we denote as X = (%, - % ]T
In our experiments, the control points that we use are points
of a downsampled version of the source point cloud. This
reduces the number of variables to optimize, which gives us
computation speedup without any noticeable effect on the

expressiveness of the thin plate spline transformation. The

closed form of the thin plate spline is then [18], [19]

N
T(x) =) aik(%;,x)+ Bx +c, (14)
i=1
where the basis function is given by k(i{i, x) = — ||x — %,|?

and the weights A = [al are constrained by

ay]

AT [X 1NX1} = 0y (D1 (15)

Let Uf be a matrix of basis functions between the control
points X and points X,

k(xy,%;) k()A(vil)

: (16)
k(x1,Xy) k(kN’XN)
We can write the transformation of points X in matrix form
as

T(X)=UXA+XB" +1c" = g¥o,
A
BT

CT

G§:[U§ X 1NX1}7 o=

The application of the transformation 7 to a matrix X is
defined to be the element-wise application of the transfor-
mation to the vectors in X.

The thin plate spline regularizer of [Equation (5)| can be

expressed in closed form as
ITl7es = T (ATUE 4). (a7

The parameters © of the thin plate spline are constrained

by [Equation (15)| Alternatively, we can use unconstrained

parameters Z by using the change of variables,
o=NXz,
NE Ipy1yx(p+1) ) 0 . (19)
o 0 null([X 11\7x1} ) ‘

The optimization problem of with respect to

the transformation 7 is equivalent to

(18)

min % T(Z HZ)-Tv(Z" §), (20)
where
1 N N N N
H = ;(G§NX)Td(P1)(G§NX)

f= %(Gﬁ‘;NX)TPY FANE)T X,
[UX¥ o o o [0xp
S¥=10 drx) ofl, sX=]d@
0 0 0 01xp

The operator d(-) constructs a diagonal matrix from the
elements of a vector, or a block diagonal matrix from a
sequence of matrices.

The optimal thin plate spline is given by the parameters
Z=H'f,or0=NXH"'f.



APPENDIX III
TRAJECTORY-AWARE NON-RIGID REGISTRATION IN
CLOSED-FORM

As summarized in in the E-step we update the
correspondences as given by and in the M-

step we minimize the objective

Epoints(Tl:K7 02) + Etrajectories(zlzTa Tl:K) + Efeatures(0¢)

with respect to the transformations T1K, the point and
feature variances o2 and 0 , and the trajectory covariances
31.7. The variables of the Ob_]CCtIVC above cannot be opti-
mized jointly in closed-form. However, each of those sets of
variables can be optimized in closed-form while holding the
other ones fixed. In that case, the optima are given by

K, Ny, M
THE = argmin 55 kz ly; = T2
jij
VK | DK S 2
D) ZR(Tk) T3 Z T*(af) - ?ZT]C (af)
k tk K 51
(21)
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where Np = Zk ; Jk pfj and 3J; is the empirical covari-

ance of the transformed trajectory points,

i) (e i)

with G = 7%(q¥) being a function of the transformation

T,
Denote Z = [(Z')T (ZK)TllT to be the con-
catenation of the parameters Z',..., Z% for the respective

transformations 77,...,7%. The optimization of
is a quadratic function of the parameters Z so
it can be solved in closed-form. The optimization has the
form of but now the matrices H and f are
block-diagonal versions of the ones in the previous section.

We constrain 3; = aa I to be a diagonal matrix with the

same variance along the diagonal. In this case, the update of
can further be simplified to

Tr(¥, + K3)

2 _ . 25

7a, Dv+K+D+1) 25)
The overall algorithm is summarized in and

it includes the closed-form updates for the M-step. We set
v = K42 in our implementation, which is a standard default
choice.

Algorithm 1 Trajectory-Aware Non-Rigid Registration
K & Ql:K

: procedure TRAJAWAREREG(X 'K Y, &
w, A\, Wir,v)

2: > Precomputation
o K
3: N + d(N ., NX ) R R
4 GN « d(G§1NX1 L GXENXT)
5. S« d(sX,...,8X)
. X T
6: S (SXI)T (SXK)T
7: forallzc {1,...,T} do X A
8 Ly + d(GX NX L GXINXT)
t
9: end for
10: > Initialization
K, Ny, M
11: Jz%ﬁzk%}; Ayyj_xiiuj
12: Uq2> — D¢]\}KM Zk,;,j’w ||¢J - ¢, ”2
13: forall t € {1,...,T} do
14: O'(th < %TI'(‘IIt)
15: end for
16: repeat > EM loop
17: > E-step
18: v+ (2m0?)P/2(2m02 )D¢/21‘“w e
19: forall ke {1,...,K} do
20: foralli,jé{l,...,Nk}><{1,...,M}do
) A o= TE 12052 ~l195 =81 12203
' Pij = ng =T K125z Ny =6 %7202,
k! ,i!
22: end for
23: end for .
24: P+ [(PY)T (P)T]
25: > M-step
26: H«+ % (GN)"d(P1)(GN)+AN'SN
+ Y gﬁ L] (Ixxx — 31kxx) L
27: < (GN)TPY +ANTs
28: Z—H Lf
29: Update 7*,..., 7% with parameters Z
30: X +—~GNZ
31 Np — 1TP1
3: 02 xip (Tr(YT d(PT1)Y)
—2Tr((PY)' X)
+Tr(X d(Pl)X))
33: 2 ¢ wio (Tr(<I>T d(PT1)®)
_oT(P®)TET)
+ (@) TaP1)d"™))
34: forallt € {1,...,7} do
35: Qt — LtZ
36: By < KQt 1k x1 -
37: D & (Qt - 1#?) (Qt - 1#:)
38: O'at < W (\I’t =+ KEt)
39: end for
40: until convergence
41: return 71, .. TE py,.. pp

42: end procedure
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